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D E T E R M I N A T I O N  O F  T H E  C O N S T A N T S  OF S P A L L - F R A C T U R E  K I N E T I C S  

OF M A T E R I A L S  U S I N G  E X P E R I M E N T A L  DATA 

A. V. Utk in  UDC 539.593 

A large deal of experimental data on the character of spall fracture of various materials upon pulse 
tension have so far been obtained. In particular, for many metals, spall fracture has been shown to increase 
with an increase in the deformation velocity [1-3], which reflects the kinetic character of the fracture process. 
In this connection, it is of interest to study various methods of obtaining information on the kinetics of spall 
fracture directly from an analysis of experimental data. The author have shown such a possibility in [4, 5] 
where the effect of the initial fracture velocity on the formation of a spall pulse has been analyzed using the 
simplest models and the critical conditions of the formation of a minimum of a spall impact on the free-surface 
velocity profile have been found. 

The goal of the present paper is to analyze the processes that occur in a medium subject to fracture 
when the compression pulse is reflected from a free surface and to study the possibility of obtaining information 
on the fracture velocity based on experimental data. 

F o r m u l a t i o n  a n d  S o l u t i o n  of  t h e  P r o b l e m .  We study, in the acoustic approximation, the evolution 
of the compression pulse of arbitrary shape after its reflection from the free surface of a specimen which 
fractures under negative pressure. We assume that the fracture begins when tensile stresses reach the critical 
value Per and is characterized by the magnitude of the specific volume of pores Vp. The total specific volume 
of a medium is equal to the sum of Vp and the specific volume of the solid component Vs: v = Vp + Vs. In 
Lagrangian variables, the system of hydrodynamic equations, which is closed by the equations of kinetics and 
state, is of the form 

c O u O P  c O v O u  ( ~  ) COVp 
0-'7 + O'h = O, c3t Oh = 0, P = p2c2  - v 3 t- Up , p - ~  = F(t ,  h), (1) 

where t is time, h is the Lagrangian coordinate, u is the mass velocity, and p and c are the initial density and 
the sound velocity, respectively. In the equation of state, the pressure is found as a function of the specific 
volume of the solid component in the equation of state. In addition, we assume that the rate of variation of 
the specific pore volume F can be expressed as the explicit function of coordinates and time. 

Figure 1 shows the flow pattern in the plane t -h .  In region 1, the interaction between the incident and 
reflected waves is absent; the dependence of the mass velocity and the pressure on the coordinates and time 
is determined by the shape of the initial compression pulse. For a simple wave, we have 

u(h,  t) = f ( h  - ct), P (h ,  t) = pcu(h,  t). (2) 

In region 3, the incident and reflected pulses (h = 0) interact with each other, which leads to the 
appearance of tensile stresses. Their absolute values do not exceed the critical one and, therefore, the medium 
does not fracture, and the solution, subject to the free-surface condition, is of the form 

u(h,  t) = f ( h  - ct) + f ( - h  - ct), P (h ,  t) = p c ( f ( h  - ct) - f ( - h  - ct)). (3) 

For h = her and t = rcr = -her /C,  the pressures reaches the threshold Per, and the material fractures in 
region 2. The flow here is determined as a result of the solution of system (1) under the boundary conditions 
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specified for h =-- her and h ~ - c r  and the initial conditions on the C_ characteristic passing through the 
coordinate origin. 

We find the solution in region 2. For this, we exclude v and vp from (1) and substitute the independent 
variables: T = t + h/c and x = h. 

After we have applied the Laplace transform with respect to the variable T to the resulting system of 
two partial equations, this system is transformed to the following system of ordinary differential equations: 

dfi s fi t5 1 d/5 s ~ 1 
d--; + + s - -  - J+ (0 ,  x) + ~ ( s ,  x),  ~ -  + - P + pc~ = - J+ (0 ,  ~). (4) c pc 2 pc 2 c c 

Here s is the Laplace variable, fi and ~b are the Laplace images of the mass velocity and the pressure, and 
F(s, z) is the Laplace image of the fracture velocity. The initial values of u and P for T ---, +0, which enter 
the Riemann J+ invariant [6], are transferred to the right-hand side of Eq. (4). Therefore, there is no need to 
determine separately u and P on the right of the shock on the C_ characteristics, because they will be found 
directly from the solution of system (4). The value of the invariant is found from the continuity condition in 
the shock, depending on its magnitude in region 1. According to (2), we obtain J+(0, x) = 2pcf(2z).  

The general solution in the fracture region, which does not increase exponentially for x ~ -cr  is 
written in the form = 

P ( s ,  x) = - pc / _P(s, ~) d~ 
2 

m O O  

X 

pc c + [1 / J+(0,~)exp ( -~  ~) d~4- -~ / F(s,~)exp (~-~ ~)d~] exp ( -  2---~-Sx)+a, 

- 0 o  - o o  ( 5 )  

pc 
pcfi(s, z) = -~ / F(s ,  ~) d~ 

- - C O  

Z Z 

pc c 4-[1 / J+(0,~)exp ('~ ~)d< 4- -~- / F(s,~)exp ('~ ~)d~] exp (-- 2:  x ) - - a .  
~ m O O  

The constant a is found from the requirement for continuity of the Riemann J_ invariant for x = xcr. In 
regions 3", 4", etc. (see Fig. 1), the functional dependences of J_ on the coordinates and time are different, 
and the invariant at each subsequent region is determined only after the solution in the preceding one is found. 
Let us find the a value within the interval 0 ~< T <~ 2rer. In region 3, we have according to (3) 

J_ = - 2 p c f ( - h  - ct) = - 2 p c f ( - c T ) .  (6) 

Since the J_ invariant is preserved along the C_ characteristics, relation (6) yields its value in region 3". 
Applying the Laplace transform in (6) and equating the relation obtained to the J_ invariant in the fracture 
region, which follows from (5) for x = xcr, we obtain 

X c r  

pc f F(s,  ~) d~ - pc](s). (7) a = - ~  
~ 0 0  

Equations (5) and (7) yield solutions in the fracture region for 0 ~< T ~< 2rcr in terms of Laplace 
transforms. Some results can be derive directly from (5), without returning to the originals. For example, 
using the known property of the Laplace transform [7] l i rn(sG(s) )  = G(0), we obtain the pressure on the 
right from the shock along the C_ characteristic in the form 

h e r  pc/ 
P = o c ( f ( 2 h )  - f(O)) + -~- F(O, () d( ,  (8) 

h 

i.e., if the initial fracture velocity is zero, the pressure directly behind the shock varies in the same manner as 
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in the absence of fracture; in particular, with h ~ hcr the pressure continues to decrease after the value Per is 
attained. Otherwise, Eq. (8) gives the stress-relaxation law: after the onset of fracture the pressure can either 
continue to decrease or begin to increase, which is determined by the relationship between the fracture velocity 
and the deformation velocity of the material in the unloading part of the incident pulse [5]. If one assumes 
that F can be expressed as a function of pressure, Eq. (8) produces the integral equation for determination of 
P on the right of the shock. This situation was analyzed in detail in [4] where the flow dynamics was studied, 
with a linear dependence of the fracture velocity on the acting pressure. 

We find the velocity of the specimen's free surface. To do this, we use the circumstance that the J+ 
invariant is preserved along the C+ characteristics in the nonfractured part of the specimen. Its value on the 
free surface equals pcu(0, t) and, for h = her, we have 

7'[5 
pc c 

- -  (X )  

from the solution obtained in the fracture region. 
The general solution (5) contains the constant a, which, as mentioned above, is sequentially found in 

regions 3", 4", etc. At the same time, this constant does not enter the relation for the J+ invariant, and, hence, 
the free-surface velocity is not dependent on it, and the relation derived below is true for all times. Using the 
known inversion formulas and the properties of the Laplace transform [7, 8], for the free-surface velocity we 
find - c r =  

u(0, t) = 2 f ( - c t )  + O(t - 2rcr) ] F(t + 2~/c,~) d(, (9) 
--ct/2 

where O(~) is the Heaviside function. We shall consider the solution obtained with a view for finding the 
relationship between the free-surface velocity profile and the parameters of fracture kinetics. 

Analys i s  of  t h e  So lu t ion .  (1) It follows from (9) that the velocity profile repeats the shape of the 
initial compression pulse at the initial moment of time. At t = 2rcr, the information on the onset of material 
fracture reaches the free surface and the velocity turns out to be higher than the velocity that would be in the 
absence of fracture. Note that  at moment 2rcr, as is seen from the above formula, the accelerations remains 
continuous if the fracture velocity is zero at the initial moment of time. Otherwise a break will be observed at 
this moment. If definite relations between the incident-pulse parameters and the fracture kinetics are satisfied, 
a minimum Um (see Fig. 2) is formed in the velocity profile at moment tin: 

C C2 tm--2rcr 
d~ -2c f l ( - c~r r t ) ' ~ - f (~r r t -2Tcr ,hc r ) - - -  / fx (~, 2(~ - ~m)) d~ ~_- 0. (10) d--/= 4 0 
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Here F,  is the partial derivative of F with respect to x, which is regarded as the function (T,x).  Since 
f ' ( - c tm)  is the deformation velocity in the incident wave pb = pOv/Ot for h = her and t = t,n - rcr, and 
F ( t m -  2rer, her) is the fracture velocity p~)p = pOvp/Ot at the same moment ,  relation (10) can be written as 

tm--2rcr 
Ovp c by 

P Ot 2 / F x @ ' 2 ( ~ - t m ) ) d ~ = 4 P - o ' [ "  ( l l )  
0 

It follows from this, in particular, that  if the fracture velocity is constant along the C_ characteristics (i.e., 
F~: = 0), a min imum is formed when 6p = 4b. For the simplest kinetics, this result was derived in [4, 5]. 
In the general case, this condition is not satisfied quantitatively, but it remains unchanged qualitatively: a 
minimum on the free-surface velocity profile is formed only under the condition that  the fracture velocity 
reaches a critical value proportional to the deformation velocity in the unloading part  of the incident pulse. 
If, for example, the fracture velocity is increased during the motion along the C_ characteristic in the region 
of negative x, i.e., F~: < 0, a min imum will be observed at the smaller fracture velocities. This case is studied 
below in more detail using a concrete model as an example. 

(2) The  spall s trength a* is determined from the free-surface velocity profile by the difference between 
the maximum and min imum velocity values: 

a* = (1/2)pc(u(O, O) - um). (12) 

Clearly, this quant i ty  in the general case depends both on the shape of the loading pulse and on the fracture 
kinetics. Note that  it follows from (11) that  a* is most  affected by the relation between the fracture and 
deformation velocities in the unloading part  of the pulse. Precisely this circumstance allows one to expect to 
obtain the kinetic information directly from experimental data. 

The spall s trength is much less sensitive to the shape of the loading pulse in the compression phase. To 
prove this, we consider two different velocity profiles which coincide in the unloading part  of the pulse, but are 
different in the durat ion of the "plateau" r ,  with constant parameters behind the shock front (see Fig. 2). It is 

evident that  in the second case, fracturing begins later in the deeper layers of the specimen: r (2) = r(~ ) + r / 2  

and h(~ ) = h(~ ) - cr/2. Using relation (10) with allowance for F(2)(T,(  - cr/2) = FO)(T , ( ) ,  it is easy to 

see that  the moments  t~  ) and t(m 2), which correspond to a min imum on the free-surface velocity profile, are 

related by the relation t~  ) = t~  ) + r ,  i.e., the min imum velocity values and, hence, the spall s trength remain 
unvaried. 

Our conclusions have so far been fairly general and independent  of a concrete fracture kinetics. In what 
follows, we shall consider a few simple kinetic relations which allow one, nevertheless, to describe the basic 
experimental results. 

(3) Let the incident pulse be shaped like a trapezoid: 

u(h, t) = f (h  - ct) = uo + k(h - ct + cr)O(h - ct + cr). (13) 

Here u0 is the maximum value of the mass velocity, k is the constant that  characterizes the pulse duration 2h0 
[h0 = -cro = -uo/(2k)],  and r is the t ime during which the velocity is constant and equals u0. The fracture 
threshold is reached at the point rcr = -hcr/C = -Pcr/(2pc2k) + r/2.  

We consider the fracture kinetics at which the rate of pore growth is a power function of the current 
pore volume Vp and max imum tensile stresses Brain attained in a given particle: 

OVp 1 ( Pmin "~ n 
P O t  = ~  Pc 2 j (pup) ~, (14) 

where r~, n, and ~ are the model constants. As indicated above, since the initial fracture velocity is zero, 
the maximum tensile stresses which arise to the right of the shock along the C_ characteristic (see Fig. 1) 
will be the same as if the material would not be fractured: Pmin = pck(2h + cr). With allowance for this 
circumstance, after integration of relation (14) the function F on the right-hand side of the last equations in 
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system (1) reduces to the form )].,<,-o1[ 
F ( T , x ) =  lr. - k  + r  ( 1 - c 0 ~ -  ~ (15) 

Substituting (15) into (9), we find the law of flee-surface velocity variation: 

- c ( 1  - ~ ) ~ / ( 1 - a ) [ k ( 1  - T ) ] ( " + 1 ) / ( 1 - ~ )  
u(O,t) _ 1 t r + In,a(t), (16) 

2u0 2r0 - r 4uo(kr~)ll(1-~) 

1- (2 rc r - r ) l ( t - r )  

where In,~(t) = S ~ / ( ' - ~ ) ( 1  - ~)./(1-a) d~. 
0 

The integral is equal to zero for a negative value of the upper bound of integration. The time tm when 
a minimum is formed in the velocity profile is found from the relation 

4(krt,)ll(1-~) 

( 1 - o) a/O-a) [k(2rcr - r) l ("+a)/( i -a) 

,-,+ 1 r ](,+o,)/(,-,,) (t,,,-:: ),,/(,-,,). 
- 1 - - ~  \2-~cr--'r'/ In ,~( tm)+ "f'~mZr k2Tcr-V 1 (17) 

Since the difference 2rcr - r = -Pcr l (kpc  2) is not dependent on r ,  it follows from (17) that tm - r is 
not dependent on r as well, and, hence, as mentioned above, um and a* have the same value both for the 
trapezoidal and triangular pulses. In what follows, without loss of generality we set r = 0. 

Relations (12), (16), and (17) give the dependence of the spall strength on the loading conditions and 
the parameters of fracture kinetics. This dependence can, however, be considerably simplified if one takes 
into account the fact that  the spall strength exceeds severalfold the tensile strength measured under static 
conditions [1], i.e., tmi(2rcr) t> 2. In addition, we shall show below that,  for most metals, the kinetic constant 
n >/4, i.e., one can consider that  (tm/(2rcr)) n >> 1. In this approximation (approximation of large deformation 
velocities), we obtain 

( ktm .~ n + 1 an,a(k~. ) l l ( .+a) an,: = (18) 
n + a n + 1 (n + 1)I,,a J ' 

where the integral I , ,a  is calculated in the upper integration limit, which is assumed to be equal to unity, and 
reduces to gamma functions [8]. The spall strength then is a power function of deformation velocity pT) = k 
and the unloading part of the pulse: 

G* 
,~, an,c,(r~,PiJ) l l ("+a), (19) 

pc 2 

where a,,~ is a weak function of parameters (of the order of unity). For example, a4,1l l ~- 1.45, as,ll 1 -~ 1.38, 
a4,2/3 ~ 1.65, and a5,2/3 ~ 1.56. Note that  although the spall strength in the general case depends on 
the threshold of fracture onset and a* ~ -Per  for ~) --* 0, in the limiting case considered this dependence 
disappears. 

For a = (m + 1) / (m + 2) (m = 0, 1 , . . . ) ,  the integral in (16) is calculated analytically and is of the 
simplest form for c~ = 1/2. For the spall strength, we here find 

2n + 1 1 [(1 + z) (1"+2)/(2"+1) - 1] (20) 
Y -  2 n + 2  z 

where 

a* 8(2n + 1)('r~,p/,) 2 
Y=-Pc, ;  z=  (-pc, lpc2)2.+l" 

Figure 3 shows the dependences y(z) for a = 1/2 and various n, which were constructed according 
to the exact (20) (solid curves) and approximate (19) (dashed curves) formulas. It is seen that the large 
deformation-velocity approximation is satisfied earlier than was assumed in deriving formula (19). For n = 4, 
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TABLE 1 

Material A, GPa. sec b 

Khl8N10T stainless steel 0.648 

M2 copper 0.220 

AM g6M aluminum 0.093 

Single-crystal molybdenum 0.144 

b 

0.11 

0.16 

0.20 

Reference 

[91 

[1] 

[1] 

[3] 

1/2 
2/3 
1/2 
2/3 

1/2 
2/3 

n 

8.59 
8.42 

5.75 
5.58 

4.50 
4.33 

TV ~ sec  

1.81.10 -23 
0.79.10 -23 

5.16- 10 -19 
2.43.10 -19 

5.92.10 -16 
2.91 �9 10 -16 

2.70- 10 -12 
1.44.10 - 1 2  

the discrepancy does not exceed 6%, beginning with ~r*/(-Pcr ) = 1.3, whereas this accuracy is reached already 
at a*/(-Pcr) = 1.1 with an increase in n up to 12. Relation (19) is a good approximation if a*/(-Pcr) >1 1.4 
even when n = 3. 

It is known [1, 2] that  experimental data are well approximated by relation (19), which is usually 
written as a* = A(pi)) b. Knowing the constants A and b and specifying the a values, one can find two 
remaining parameters of fracture kinetics. Table 1 lists the thus calculated parameters of fracture kinetics for 
two values of a.  It is seen that  an increase in a from 1/2 to 2/3 leads to a decrease in vg by approximately 
two times. 

Let us consider now what fracture velocities occur in the specimen when a minimum is formed in 
the free-surface velocity profile. With this in view, we study the variation in pbp along the C+ characteristic 
passing through the point t,,, (t =tm + h/c) (see Fig. 1). It follows from (15) that  pbp with 

n Ct m 
hp = (21)  

n + a  2 

reaches the maximum value 

(P~)m ( n ~n/(,-~)(~(1 - ~)~a/(1-a)(ktm) (n+~ 
= J 

(22) 

In the approximation (18), we obtain 

1 _ o  
(p'~'p) m ~ �9 (23)  

4k \ n - - ~ a /  ~ (n + 1)I,,,a 

Using (23), one an readily show that,  for n />  4, the maximum fracture velocity decreases little as n 
grows, remaining practically constant and equal to its limiting value for n ~ oo: 

(P'Op)m zz 
- -  ( 2 4 )  

4k ~ ezF(1 + z) '  z - 1 - a" 

Since the constant k equals p/J, we again have the statement proved above: a minimum in the free-surface 
velocity profile is formed when the maximum fracture velocity reaches a critical value which is proportional to 
the deformation velocity in the unloading part of the pulse: (bp),n = 3,7). Since the fracture velocity increases 
during the motion along the 6'- characteristic deep in the specimen, 7 < 4 and decreases approximately from 
2 to 1 with an increase in o from 1/3 to 2/3. 

We would like to note some specific features of fracture that are associated with the kinetics (14). First, 
the spall strength, which is determined by a minimum velocity in the free-surface velocity profile, is smaller 
in absolute value than the maximum tensile stresses occurring in the specimen at the point (t,n/2, -ctm/2) 
(see Fig. 1) by the quanti ty Aa/a* = (1 - a)/(n + a), which can be approximately 10%. This fact is one 
more argument in favor of the fact that the spall strength characterizes not so much the strength properties 
of materials under conditions of shock-wave loading as their resistance to fracture under specified conditions. 
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Second, the model that we have studied is suitable only for description of the initial fracture phase 
when stresses are tensile and the pore collapse has not yet occurred. With the growth of porosity, the stresses 
in the fracture region relax and can become positive after a minimum in the free-surface velocity profile 
is formed. Beginning with this moment,  it is necessary to describe the pore collapse, which can be done 
using the kinetic equation (14) after its modification, for example, after the factor (-Pmin)" is replaced by 
- P ( - P m i , )  "-1, where P is the current pressure. As shown by Utkin and Kanel [9], this kinetics is suitable 
for numerical fracture simulation in real materials under spall conditions and describes satisfactorily not 
only the onset of fracture but also subsequent velocity oscillations in the free-surface velocity profile because 
of the circulation of waves in a spall plate. We failed to find an analytical solution of the problem in this 
formulation. However, since the initial and modified kinetics almost coincide at the initial stage of fracture, 
all the results obtained above, in particular, the dependence of the spall strength on the deformation velocity 
(19), remain unchanged. This makes it possible to apply the method of determining the kinetic constants 
from the experimental dependences a*0) ) in the description of real media if the models used reduce to (14) 
at the initial stage of fracture. 

It is necessary to note that the correspondence of the results derived using the model presented to the 
experimental results should not be considered as proof of the validity of this form of the kinetic equation. 
Moreover, the experimental results can be approximated with some accuracy not only by a power dependence 
of the form (19). 

Figure 4 shows the experimental results for single-crystal molybdenum [3] and stainless steel [10] in 
the coordinates a*-log(p~)) which are approximated by the relation 

a* = A + B log (p,)). (25) 

The constants A and B are equal to -24.52 and 5.65 for molybdenum and -0.94 and 0.67 GPa for steel. The 
dashed curves refer to the approximation by the power function. It is seen that both dependences describe 
the experimental data with the same accuracy. We shall show that the dependence (25) can be obtained 
theoretically, with an appropriate choice of the kinetic equation. 

(4) As before, we assume that the rate of pore growth depends on the maximum tensile stresses and 
the current porosity and is of the form 

0Vp__ l e x p ( _ ~ ) ( p V p ) a  ' (26) 
P Ot 

where r~,, a, and/9 are the constants. Defining the function F(T,x) and substituting it into (9), we obtain 
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the free-surface velocity versus the time: 

u(0, t) _ 1 t c(1 - -  O ) a / ( 1 - c r )  e x p [ ~ ( X  - -  O)]Ct] 
2U0 -- ~r0 q- 4U0(kT/~)l/(I-a) J/~,a(t) (27) 

k(t-2Tcr) 

(J~,~(t) = f ~ / (] -~)exp[-~(1-a)]d~) .  
0 

Differentiating the velocity with respect to the t ime and equating it to zero, we find the t ime of 
formation of a min imum and then the min imum velocity and the spall strength. If e x p [ - f l ( 1 - a ) k ( t m - 2 r c r ) ]  << 
1, which corresponds to the approximation of large deformation velocities, we have 

cr* 1 [ 4 ~ / ( ] - - ~  ] 1 ln(r~pT)), (28) 
pc ---~ ~ fl(1 - a)  In t e r ( 1 / ( 1  - a ) ) J  + /~ (1  - a)2 

where F(x) is the gamma function. The relation obtained coincides with relation (25) and, for a given value 
of a,  one can find r~, and fl using experimental  data. For example, if a = 1/2, we have r t, = 6 .6 .10 -4 sec and 
= fl = 2278 for steel and r~ = 1.8 �9 10 -6 sec and fl = 439 for molybdenum. 

In concluding, we note that  the qualitative character of the dependence of the spall s trength on the 
deformation velocity of both (19) and (28) can also be found directly from the form of the kinetic equations 
(14) and (26) if the critical spall-pulse formation condition (Z)p = W3, where 3' is constant)  is taken into account 
and if one assumes that  a* ,-, -Pmin- The  functional dependence obtained in this case can turn out to be 
somewhat distorted, because the porosity Vp remains undetermined in this estimation.  For example, instead 
of the dependence (19), we find a* ~ (73) I/n, i.e., the exponent is not dependent on a. If we take into account 
that  a max imum porosity is at tained with h = (-Ctrn/2)n/(n + 1) and is proportional  to a*, which can be 
readily obtained from relation (14) with the use of formulas (18) and (19), the character of the dependence 
will be correct. But  it is obvious that  it is impossible to predict  that  (Vp)r, ,-~ a* without  the knowledge of an 
analytical solution. 

Thus, we have studied the  effect of the fracture kinetics on the formation of a spall pulse within the 
framework of the acoustic approximation.  With an arbitrary fracture kinetics, a min imum in the free-surface 
velocity profile has been shown to be formed only if the fracture velocity reaches a critical value proportional 
to the deformation velocity of the material  in the unloading part  of the pulse. We have proposed an algorithm 
which allows one to find the kinetic constants if the experimental dependence of the spall s trength on the 
deformation velocity is known. 

This work was supported by he International Scientific-Technical Center (Grant No. 124). 
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